
Gas chromatograms of fatty acid methyl esters and of volatile lipid
oxidation products from fish lipid extracts are analyzed by
multivariate data analysis [principal component analysis (PCA)].
Peak alignment is necessary in order to include all sampled points
of the chromatograms in the data set. The ability of robust
algorithms to deal with outlier problems, including both sample-
wise and element-wise outliers, and the advantages and drawbacks
of two robust PCA methods, robust PCA (ROBPCA) and robust
singular value decomposition when analysing these GC data were
investigated. The results show that the usage of ROPCA is
advantageous, compared with traditional PCA, when analysing the
entire profile of chromatographic data in cases of sub-optimally
aligned data. It also demonstrates how choosing the most robust
PCA (sample or element-wise) depends on the type of outliers
present in the data set.

Introduction

Chemometric tools, such as principal component analysis
(PCA) for visualisation and data mining, are frequently used to
analyse chromatographic data. In most cases, chromatographic
data are transformed to peak areas, which are then used for fur-
ther analysis. The method relies on subjective peak selection and
peak identification and on integration parameters, which if not
properly set, may cause great errors in the calculated peak areas.
Implications of the data extraction method, thus, are incorpo-
rated in the PCA analysis. The disadvantages concerned with
peak area analysis, such as loss of information due to the selec-
tion of a subset of peaks and to erroneous peak areas, can be
avoided by using the entire chromatographic profile per se when
analysing the data. In addition, peak shapes and information
about the absence or presence of peaks are automatically
included in the data analysis.

Unavoidable retention time shifts from one run to another
obscure differences due to chemical variations between samples.
Because multivariate data analysis requires uniform presenta-
tion of data [i.e., all data vectors have to be of the same length
with corresponding elements (variables) representing similar
phenomena in all samples], an appropriate pre-processing tech-
nique to align the chromatograms is needed. Variations, thus,
are not dominated by shifts between variables but by different
levels of the variables as they should.

Several retention time alignment algorithms have been
reported in the literature (1–3). In the present study, the corre-
lation optimization warping (COW) algorithm (2), originally
developed as a data pre-processing step in multivariate mod-
elling of chromatographic data. The COW algorithm has been
successfully employed to align chromatograms from gas chro-
matography (GC)–flame ionization detection (FID) (3,4) and
GC–mass spectrometry (5) measurements. According to Tomasi
et al. (4), COW is less flexible than other warping methods, thus
giving fewer artefacts and improving the quality of the alignment
when applied to complex chromatographic data. COW allows
aligning complex chromatograms with different number of
peaks, peak intensities, and peak widths. Furthermore, it cor-
rects peak shifts in both directions and aligns many chro-
matograms simultaneously, without any knowledge or
identification of peaks.

PCA, like most other common chemometric methods, is based
on the less robust least squares estimation. This means that the
presence of even one single outlier in the data set can hamper the
analysis and lead to incorrect conclusions. Outliers are measure-
ments that do not fit into the pattern or grouping shown by the
majority of measurements in a properly designed experiment.
The most common outlier types are complete sample measure-
ments (data vectors), but also individual “strange” data elements
in the chromatogram may be considered as outliers.

The outlier problem can be solved in two ways: (i) by diagnos-
tics or (ii) by robust estimators (6). In the first approach, outliers
are identified and expelled from the data set prior to making the
chemometric model. A complication is that it may be difficult to
identify outliers, even when multivariate data are available, and
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the task gets harder and more time-consuming when the
amount of data is huge. In the second approach, which is used in
this paper, robust estimators are used instead of the ordinary
non-robust least squares estimator. Robust methods reduce or
remove the effect of outlying data points, allowing the remainder
to predominantly determine the model.

In this study, the advantage of using all collected data points
from the GC in the chemometric analysis combined with COW
pre-processing is illustraited. Because of the outlier problem,
concerning both sample-wise and element-wise outliers, the
advantages and drawbacks of two robust PCA (ROBPCA)
methods, ROBPCA (7) and robust singular value decomposition
(RSVD) (8), are also investigated for the analysis of GC data.
Opposite to the methods that rely on subjective peak selection
and peak areas, the PCA analysis is able to identify relevant peaks
and use all information contained in the chromatograms.

The analyses are performed on two data sets differing in
quality. The first is GC–FID data from fatty acid methyl esters
(FAME), which are “well behaved” in the sense that outliers are
expected to be due to insufficient peak alignment only. The
second data set consists of GC–FID data of volatile lipid oxidation
productions (ATD), which have a relatively higher risk of arte-
facts and with larger sample differences and peak shifts.

Materials and Methods

Data sets
Gas chromatograms of FAMEs and of ATDs collected by

dynamic head-space were kindly provided by the lipid group of
the authors’ institute. An FID was used for both types of chro-
matograms. The data from gas chromatograms of FAMEs show
the fatty acid composition of triglycerides or phospholipids. In
the present case, samples of fish oil from farmed rainbow trout
fed two different diets were included. The data from gas chro-
matograms of ATDs show volatile lipid oxidation products
(mostly aldehydes, ketones, and short-chain fatty acids). The
samples included were from farmed rainbow trout kept frozen at
–20°C, –30°C, or –80°C for 0–24 months. Detailed results con-
cerning the experiments and the chemical findings are under
preparation for publication.

The chromatograms were imported from the instrumental
result files (ASCII text format) into MatLab 7.0.4 (The
MathWorks) where the pre-processing (normalization, baseline
correction, and alignment) and multivariate data analyses were
performed. Each chromatogram was loaded into a MatLab
workspace as a vector composed of the FID-signal collected over
the duration of the GC run. The chromatograms were appended
into a matrix where each row was the chromatogram from a
single sample. The algorithms for COW and ROBPCA were
downloaded from the literature (9,10). The algorithm for RSVD
was kindly provided by A. Belousov (11).

Pre-processing of data
Pre-processing of the chromatograms prior to PCA is neces-

sary to remove variations unrelated to chemical compositions.
The pre-processing consists of baseline correction, normaliza-
tion, and peak alignment using COW.

Baseline shift removal
Because baseline shifts affect both the warping and the nor-

malization, a baseline correction is necessary. Furthermore, PCA
cannot separate variance due to peak misalignment from vari-
ance due to baseline shifts. Hence, the baseline correction was
essential. All chromatograms were individually baseline-cor-
rected by subtracting the average signal for the last 1300 s and
first 150 s, respectively, from the full chromatogram.

Normalization
Normalization to a constant area was used to compensate for

differences in the amount of injected sample for Data set 1 (gas
chromatograms of FAMEs), taking advantage of the unspecificity
of the FID. Data set 2 (gas chromatograms of ATDs) was normal-
ized by dividing each chromatogram by the injected amount of
sample, giving informational value to the total amount of
volatiles produced. In both cases, normalization was necessarily
applied after baseline adjustment in order to give meaningful
results.

Chromatographic alignment by COW
The aim of COW was to align two chromatographic profiles by

piecewise linear stretching and compression, also known as
warping, of the time axis of one of the profiles relative to the
other. The chromatograms are subdivided into segments that
were iteratively stretched and compressed by interpolation. The
optimal alignment is the solution that maximizes the correlation
between corresponding segments in the sample and the refer-
ence chromatogram. The number of data points each segment is
allowed to change (maximal warping) is determined by the so-
called slack parameter and depends on the peak shift to correct.
According to Nielsen et al. (2) the optimal alignment will be
achieved when the segment length is in the region of the
number of data points making up the sharpest peak in the chro-
matogram.

The optimal chromatographic alignment settings in this study
were selected as the segment length and slack that maximizes
the first singular value as proposed by Christensen et al. (5).
Combinations of segment lengths from 10 to 60 data points, and
increments of 5 and slacks between 1 and 5 were tested to find
the best settings. The optimal settings were based on the evalua-
tion of the whole data set for the data from gas chromatograms
of FAMEs and of 30 randomly selected samples for the data from
gas chromatograms of ATDs.

PCA
The classical PCA method is not robust against outliers

because of the least squares criterion. This means that even one
single outlier in the data set can have an arbitrarily large effect
on the model and lead to wrong interpretation and conclusions.

Different approaches have been proposed for making a robust
version of PCA. They can be grouped as follows: (i) techniques
that replace the classical covariance matrix by a robust covari-
ance estimator (6,12,13) as the minimum covariance determi-
nant (MCD) (14). Unfortunately, these approaches are limited to
relatively low-dimensional data and are computational costly. (ii)
Another group is methods that use projection pursuit (PP) tech-
niques (15–20). PP searches for structure in high dimensional



data by projecting these data into a lower-dimensional space that
maximizes a robust measure of spread called the projection
index. These methods can handle situations where the number
of variables exceeds the number of samples. (iii) A combination
of (i) and (ii) called ROBPCA (7) is used, which should yield more
accurate estimates than the raw PP algorithm. The final group
(iv) involves adjustments to the internal computations of the sin-
gular value decomposition (SVD) algorithm by replacing the
least squares criterion with a robust estimate (8,21,22). These
RSVD methods can handle high-dimensional data and element-
wise outliers. Element-wise outliers exist where one or several
individual data elements in otherwise good rows are corrupted.

In this study, the classical least square PCA will be compared
with the two robust versions, ROBPCA and RSVD. Both robust
methods can handle situations with more variables (columns)
than samples (rows), are computationally feasible, and have
shown good performance in other studies (17,23).

ROBPCA
The ROBPCA approach combines PP with robust covariance

estimation in lower dimensions (7). The ROBPCA method can be
divided into three major steps. First, the data, stored in an n ˙ p

data matrix X, were pre-processed by reducing their data space to
the affine sub-space spanned by the n observations. This was per-
formed by SVD of the column mean-centred X, without loss of
information. In the next step of the ROBPCA algorithm, PP was
used for initial dimension reduction (k << p). A measure of “out-
lyingness” was computed for each data point. The h data points
with smallest outlyingness were then retained, the covariance
matrix of this h-subset computed, and the number of principal
components to retain (k) selected. In the last step of the ROBPCA
algorithm, the re-weighted MCD estimator is then applied to this
lower dimensional data space to find a robust center and covari-
ance estimator of the projected samples. Finally, these estimates
were back-transformed to the original space, and a robust esti-
mate of the location of X and of its scatter were obtained.

Robust singular value decomposition
This method, called RSVD (8), was based on the alternating

least squares algorithm for SVD proposed by Gabriel (24). In this
algorithm, the minimization problem was solved with criss-
cross regressions, which involves iteratively computing dyadic
(rank 1) fits using least squares regression. The original
Gabriel–Zamir SVD algorithm is then rendered robust by substi-
tuting the non-robust least squares regression with a robust esti-
mator, which in this case, was the alternating L1-norm (the sum
of absolute residuals).

Results and Discussion

Data set 1 (GC–FID of FAMEs)
Optimal warping parameters

Figure 1 shows the aligned chromatograms appearing from
fish whose feed contained mostly vegetable oil or pure fish oil,
respectively. In all chromatograms, the same fatty acids appear,
but with different concentrations, reflecting the different feed
types. Fish fed vegetable oil contained higher amounts of 18:1 (n-
9), 18:2 (n-6), and 18:3 (n-3) than did fish fed fish oil. On the
other hand, fish fed fish oil contained the highest amount of
14:0, 16:0, 16:1 (n-7), 18:4 (n-3), 20:4 (n-3), 20:5 (n-3), 20:1 (n-
9), 22:1 (n-11), 22:5 (n-3), and 22:6 (n-3). The relatively high
amount of long chain polyunsaturated fatty acids in the fish fed
vegetable oil is due to small amounts of fish meal in the feed.

The peak identified around 24.7 to 27.3 min in the un-warped
data is due to an internal standard in some of the samples. This
peak is isolated from the other peaks, and for that reason, it is
possible to exclude the part of the chromatogram from the data
analysis allowing samples both with and without an internal
added standard to be included in the data matrix. If the part con-
taining the standard was retained, severe artefacts in both the
normalization step and in the following PCA modelling would
occur.

The warping parameters segment length and slack were con-
sidered optimal when maximizing the first principal component
from a PCA model fitted to the warped data. Combinations of
segment lengths of 10 to 60 data points with increments of 5 data
points and slacks between 1 and 5 were tested. Furthermore, the
mean relative difference together with the maximal decrease and
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Figure 1. Chromatograms (GC–FID of FAMEs), after alignment using COW
with a segment length of 15 data points and a slack of 3 points, of samples
from fish fed on diets containing vegetable oil (A) or fish oil (B).

Retention time (min)

Retention time (min)



increase in area difference between the un-
warped and the warped chromatograms were cal-
culated for all tested settings to evaluate the
warping effect on the chromatogram profiles.

The explained variance for a one-component
model increased from 30.6% (un-warped and un-
centred data) to 87.2%, attained with a segment
length of 15 data points and a slack of 3. The
absolute area of the chromatograms after
warping was changed, on average, with 4.4%
compared with the original chromatograms with
a maximal decrease in the area of 12.0%, and a
maximal increase in area of 6.0%. These changes
in area were due to interpolation when warping
the data. Four of the samples experienced a
decrease in area of more than 10% compared
with the original chromatograms. When com-
paring the raw data of these samples with the
standard chromatogram, it appeared that they
had large shifts in retention times, resulting in
the maximum warping allowed. In Figures 2A
and 2B, the effect of warping was illustrated on a
selected region of the chromatograms where the
improvement by warping was pronounced.
However, in the last part of the chromatograms,
the improvement was not that good (Figures 2C

and 2D). This misalignment was caused by larger shifts in reten-
tion time in the last part of the chromatograms and might be
addressed by modifying the COW algorithm. The chro-
matograms might be split into several segments along the reten-
tion time axis and different warping parameters used for each of
these segments.

Alternatively, misalignment may be dealt with by using RSVD,
a method that only excludes outlying elements. This means that
it was not necessary to exclude whole samples because of mis-
alignment in some part of the chromatograms because the prop-
erly aligned parts of the chromatograms are still available for
analysis.

Principal component analysis
To investigate the effect of warping on the results obtained

from PCA modelling, PCA was first applied to the mean-centered
un-aligned data set. The score plot of PC1 versus PC2, from the
model fitted to the un-aligned data, is presented in Figure 3A.
Four distinct groups appear: three groups matching the storage
period and time of analysis and one group where all samples
belong to the same storage period, measured on the same day.
Because of the experimental design, a confounding effect
between storage period and time of analysis was unavoidable; it
was, therefore, difficult to conclude if the grouping was due to
storage period or time of analysis. When looking at the un-
aligned chromatograms from samples stored for 24 months, a
clear shift in retention time between the two groups appear, indi-
cating that the clustering seen in Figure 3A was due to shifts in
retention time, rather than chemical differences between the
samples. Similar results were obtained when comparing the
chromatograms for two groups separated along PC1. In Figure
3B the corresponding score plot of PC1 versus PC2, for a PCA
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Figure 2. The effect of warping on two selected regions of the chromatograms (GC–FID of FAMEs):
before warping (A and C); and after warping (B and D). For warping, COW was used with a segment
length of 15 data points and a slack of 3 points.

Figure 3. PCA scores: PC2 versus PC1, without warping (A) and with warping
(B). The samples are marked according to frozen-storage time: 0 months (�� ),
4 months (��) and 24 months (��).
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Figure 4. PCA scores: PC2 versus PC1 for classical PCA (column 1: A, D, G, J, and M) and for ROBPCA (column 2: B, E, H, K, N), and PC3 versus PC2 for RSVD
(column 3: C, F, I, L, O). The chromatograms (GC-FID of FAMEs) were aligned by warping with the slack kept constant at 3 and varying segment lengths: 15 (A–C),
20 (D–F), 30 (G–I), 40 (J–L), and 45 (M–O) data points. The samples are marked according to oil type in the feed: vegetable oil (��) and fish oil (�� ). A few “extreme”
samples are marked with filled symbols (A–C).
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model fitted to the warped data, shows two groups only. These
groups cannot be ascribed to a storage period or time of analysis,
but they correlate to changes in the fatty acids profile caused by
the different oils in the feed.

Furthermore, the loading plots for PC1 (37.6%) and PC2
(14.8%), from the un-warped data, showed complicated patterns,
with many regions resembling the first derivative. This is typical
for data distorted to a high degree by shifts in retention time (1).
The shifts in retention time not only affect the first PC but also
the subsequent components. 

Thus, it was concluded that the pattern for the unaligned data
was due to misalignments in the un-warped chromatograms
rather than to chemical differences of the samples. For a reliable
interpretation of the PCA model, alignment of the chro-
matograms is essential. 

As illustrated in Figure 3, warping the chromatograms clearly
improves a PCA, but it may be difficult to obtain optimal warping
for all samples, especially in unsupervised situations. In that
case, using robust PCA methods on the warped data may be
helpful and provide better results than does the traditional PCA
method, based, as it was, on least squares estimates. Moreover,
even with perfectly aligned data, outliers may occur because of
instrumental instability, etc. In this situation, the use of a robust
methods was also of advantage.

In the score plot of PC1 versus PC2, both from traditional PCA
and ROBPCA, clusters for each of the two treatments (vegetable
or fish oil) were observed (Figure 4, first row). For both methods,
PC1 scores discriminated between fish oil and vegetable oil,
whereas PC2 scores displayed the variance between individuals
in each group. Samples of fish fed vegetable oil were character-
ized by a high concentrations of 18:1 (n-9), 18:2 (n-6), and 18:3
(n-3), as their peaks in the chromatogram were positively loaded
in PC1, and lower concentrations of 14:0, 16:0, 16:1 (n-7), 20:4
(n-3), 20:5 (n-3), 22:1 (n-11), and 22:6 (n-3), with peaks highly
negatively loaded in PC1. The opposite results were obtained for
samples of fish feed with fish oil.

In neither of the two models (traditional PCA and ROBPCA)
was PC2 correlated to the experimental design, but this was pri-
marily due to biological variation within the groups and to arte-
facts, such as a suboptimal baseline correction. No other
groupings where found in higher order PCs. The difference in
baseline was especially pronounced for the extreme samples with
high score values in PC2 in both traditionally PCA and ROBPCA
(filled symbols).

An even better class separation was obtained with elementwise
robust PCA (Figure 4). No centering of the data was built in this
RSVD algorithm, as was the case for ROBPCA, meaning that the
first PC explained the centering of the data and was, for that
reason, not interesting. PC2 and PC3 explained 60.0% and
22.1%, respectively, of the variance when PC1 was excluded, and
these PCs are both relevant for the clustering. The same fatty
acids, as found from the two previous models, were responsible
for the clustering in Figure 4. 

The explained variance in the first PC increases with ROBPCA
77.8%, compared with traditional PCA, 69.7%. The cumulative
variance of the two components from RSVD, associated with the
clustering due to different oils in the feed, was estimated to
82.1%. The variance was concentrated in the robust models, as a

result of excluding outlying samples or outlying elements from
the modelling step leading to increased class separation and
reduced within-class variation. 

In the former paragraphs it was illustrated that for well warped
data, the results obtained with traditional PCA and ROBPCA
were fairly good, even though the result can be improved by
using the robust SVD method. Now, it will now be interesting to
compare the PCA methods with decreasing data quality to inves-
tigate how well the data need to be aligned in order to yield
acceptable results according to clustering. The data quality was
based on the explained variance for the different warping param-
eters tested, fitting a one component model (PCA) to the nor-
malized, but un-centred data (5). The slack was kept constant at
3, and the segment length was increased from 15 to 50 data
points. The explained variance for a one component model when
evaluating the warping parameters was: segment 20, 86.0%; seg-
ment 30, 84.4%; segment 40, 79.6%; segment 45, 72.4%; and
segment 50, 67.0%.

The score plots in Figure 4 illustrate the effect of reduced data
quality on the three different principal component analysis pro-
cedures. Results obtained for data warped with a segment length
of 50 data points are not displayed, as they were similar to the
results obtained with data warped with a segment length of 45
data points. A clustering according to different types of oil in the
feed was observed for all three methods for data of high quality,
although the clearest clustering was obtained with the two
robust methods. With decreasing data quality (i.e., 79.6%
explained variance and below in this case) the plot gets more
unclear regardless of which PCA method was used to analyze the
warped data. This clearly illustrates that data, and thereby the
warping, need to be of a certain quality to obtain reliable results.
The robust methods can not remedy problems with large shifts
in retention time. 

Data set 2 (GC–FID of ATDs)
Optimal warping parameters

Figure 5 shows aligned chromatograms for samples stored at
–20°C and –80°C. The profiles and the total amount of oxidation
products depend strongly on the storage temperature, as would
be expected. The number of peaks and their areas are much
higher for samples stored at –20°C than for those stored at –80°C
(The storage time was 24 months in both cases). 

The highest obtained explained variance for a one component
un-centred PCA model was 80.1%, attained with a segment
length of 20 data points and a slack of 3. In comparison, the
explained variance for a one component model of un-warped and
un-centred data was only 65.8%. 

Principal component analysis
The score values of PC1 and PC2 from both traditional PCA

and ROBPCA, as well as of PC2 and PC3 from RSVD, are shown
in Figure 6. The samples are marked according to their storage
temperature. For all three models, PC1 scores (PC2 for RSVD)
turned out to be reasonable in storage temperature. The scores
went from one sign to the other related to storage temperatures
from –80°C or –30°C to –20°C. The clearest grouping according
to storage temperature, –80°C or –30°C versus –20°C was
observed with RSVD. No big difference in PC1 scores was
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observed between classical PCA and ROBPCA. Three outlying
samples were separated from the other samples along PC2 (PC3
for RSVD). With ROBPCA, the three outliers are excluded from
the modelling step and are placed closer to the other samples.
Additionally, the variation accounted for by PC2 scores (PC3 for
RSVD) was due to variation within each storage time, reflecting
the biological variation. It was not possible to identify other pat-
terns in the data by plotting other combinations of principal
components. 

The explained variance for PC1 and PC2 was 62.1% and 19.4%,
respectively, for classical PCA and 76.3% and 11.%, respectively,
for ROBPCA, resulting in a slightly higher explained variance for
a two component model when applying ROBPCA. For RSVD, the
explained variance for PC2 and PC3 was 6.0% and 22.1%, respec-
tively. The low explained variance was a result of the presence of
the outlying samples; only the first principal component was
associated with a common variation between all samples,
whereas the following components were primarily associated
with the outlying samples. PC5 from RSVD accounted for 23.5%
of the explained variance and was only caused by the three out-
lying samples (results not shown). 

The chromatographic profiles of the three outliers were
almost identical. A comparison of the chromatograms from the
three outliers with the other samples stored at –30°C showed
that the profile from the outliers were outstanding from the

other chromatograms, with some peaks reaching higher or
lower intensities, whereas other peaks were missing or only
found for the three outliers. The full data vectors of these sam-
ples may, therefore, be regarded as outliers. This can also explain
why the robust SVD method was not able to handle these outliers
efficiently. All elements from the sample ought to be excluded,
but the method can “only” handle up to 50% outlying elements
in each data vector. The data set was not perfectly warped,
meaning that all peaks are not perfectly warped and outlying ele-
ments exists. This is why different groupings are observed

Figure 6. PCA scores: PC2 versus PC1 for classical PCA (A), ROBPCA (B), and
PC3 versus PC2 for RSVD (C). The chromatograms (GC-FID of ATDs) were
aligned by warping with a slack of 3 and a segment length of 20 data points.
The samples are marked according to storage temperature: –20°C (��), –30°C
(��), and –80°C (�). Three outliers (all –30°C samples) are marked with filled 
circles.

Figure 5. Chromatograms (GC–FID of ATDs) of samples stored at –20°C (A)
and –80°C (B). 
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between ROBPCA and RSVD in the actual situation: in ROBPCA,
the entire sample is excluded from the modelling step, leaving
out the three outliers completely and thereby assigning PC2 to
another, perhaps more interesting, variation.

Conclusion

In designed experiments where one looks at a whole set of
chromatograms at a time, multivariate data analysis is a useful
alternative to classical peak selection and area calculation proce-
dures. Alignment of the chromatograms is necessary and may, to
a large extent, be done by automatic procedures. In situations
where only suboptimal alignment is obtained, or other situations
where outlying measurements occur (e.g., because of bad base-
lines or errors in sample amount injected) robust algorithms are
to be preferred in order to keep the outliers from severely inter-
fering with the multivariate models. Situations where only some
part of the chromatograms are not properly aligned are best dealt
with by using element-wise robust methods (e.g., RSVD). When
the outliers are due to features throughout the chromatogram,
sample-wise robust methods (e.g., ROBPCA) perform the best.
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